多元函数偏导,全微分,高阶偏导

一、回顾一元函数导数、微分形式

导数 $$f'(x)=\dfrac{dy}{dx}$$
微分形式$$\Delta y = f'(x) \Delta x + O(\Delta x)$$

二、多元函数一阶偏导

$$f_x'(x,y)=\dfrac{\partial z}{\partial x},f_y'(x,y)=\dfrac{\partial z}{\partial y}$$
把另一变量当作常量来求。

三、多元函数一阶全微分

$$\Delta z = f_x' \Delta x + f_y' \Delta y +O(\rho)\ ,\quad \rho=\sqrt{\Delta x^2+\Delta y^2}$$

四、多元函数二阶偏导

$$f_{xx}''(x,y)=\dfrac{\partial ^2 z}{\partial x^2}=\dfrac{\partial( \frac{\partial z}{\partial x})}{\partial x}$$

$$f_{xy}''(x,y)=\dfrac{\partial ^2 z}{\partial x \partial y}=\dfrac{\partial( \frac{\partial z}{\partial x})}{\partial y}$$

$$f_{yx}''(x,y)=\dfrac{\partial ^2 z}{\partial y \partial x}=\dfrac{\partial( \frac{\partial z}{\partial y})}{\partial x}$$

$$f_{yy}''(x,y)=\dfrac{\partial ^2 z}{\partial y^2}=\dfrac{\partial( \frac{\partial z}{\partial y})}{\partial y}$$

当$$f_{yx}'',f_{xy}''$$皆连续时,$$f_{yx}'' = f_{xy}''$$

五、连续、可偏导、可微关系

连续可微偏导关系.jpg
连续可微偏导关系2.jpg
连续可微偏导关系3.jpg
连续可微偏导关系4.jpg

发表新评论