多元复合函数求导

口诀:分段用乘,分叉用加,单路全导,岔路偏导。

一、1-n-1类型

$$z=f(u,v),\begin{cases}u=\phi(t) \\v=\psi(t) \end{cases} \Rightarrow z = f[\phi(t),\psi(t)]$$

$$\dfrac{dz}{dt}=\dfrac{\partial f}{\partial u}\cdot\dfrac{du}{dt}+\dfrac{\partial f}{\partial v}\cdot\dfrac{dv}{dt}$$

多元复合含求导数.PNG

二、1-n-n类型

$$z=f(u,v),\begin{cases}u=\phi(x,y) \\v=\psi(x,y) \end{cases} $$

$$\dfrac{\partial z}{\partial x}=\dfrac{\partial f}{\partial u}\cdot\dfrac{\partial u}{\partial x}+\dfrac{\partial f}{\partial v}\cdot\dfrac{\partial v}{\partial x}$$

$$\dfrac{\partial z}{\partial y}=\dfrac{\partial f}{\partial u}\cdot\dfrac{\partial u}{\partial y}+\dfrac{\partial f}{\partial v}\cdot\dfrac{\partial v}{\partial y}$$
多元复合含求导数2.PNG

三、1-混合-n类型

$$z=f(x,v), v=\psi(x,y) $$

$$\dfrac{\partial z}{\partial x}=\dfrac{\partial f}{\partial x} +\dfrac{\partial f}{\partial v}\cdot\dfrac{\partial v}{\partial x}$$

$$\dfrac{\partial z}{\partial y}=\dfrac{\partial f}{\partial v}\cdot\dfrac{\partial v}{\partial y}$$

多元复合含求导数3.PNG

四、1-混合-1类型

$$z=f(u,v,t),\begin{cases}u=\phi(t) \\v=\psi(t) \end{cases} $$

$$\dfrac{dz}{dt}=\dfrac{\partial f}{\partial u}\cdot\dfrac{du}{dt} +\dfrac{\partial f}{\partial v}\cdot\dfrac{dv}{dt} +\dfrac{\partial f}{\partial t} $$
多元复合含求导数4.PNG

五、1-n-1类型二阶导

$$z=f(t^2,e^t)\ ,\ f(u,v)$$二阶连续可导,求二阶导数

关键 $$f1',f2'$$均为关于u,v的复合函数$$f_u'(t^2,e^t),f_v'(t^2,e^t)$$!

简化记号$$f_1'=\dfrac{\partial f}{\partial u},f_{12}''=\dfrac{\partial ^2 f}{\partial u \partial v},\cdots$$

解答:
$$\dfrac{dz}{dt}=2tf_1'+e^tf_{2}'$$

$$\dfrac{d^2z}{dt^2}=2f_1'+2t(2tf_{11}''+e^tf_{12}'') $$

$$\qquad + e^tf_2'+e^t(2tf_{21}''+e^tf_{22}'') $$

六、1-n-n类型二阶导

多元复合含求导数5.PNG

发表新评论