Systems of Equations

Determine whether each system of linear equations has 'unique solution', 'no solution' or 'infinitely many solutions'.

1)
$$y + 7x = 50$$

 $14x - 5y = -28$

2)
$$3s = -18r + 15$$

 $12r + 2s = 10$

3)
$$54 = -6a + 18b$$

 $3a - 9b = -27$

4)
$$2q = 20 + 5r$$

 $6q - 15r = 12$

5)
$$-4s + 2t - 13 = 0$$

 $8s - 6t = 42$

6)
$$5y - 20z = 45$$

 $y - 4z = 9$

7)
$$14m = 3n + 8$$
 $-6n + 28m = 12$

8)
$$-11 = -20u + 5v$$

 $6u + v = 22$

9)
$$-4p + 12q - 36 = 0$$

 $-p + 3q - 9 = 0$

10)
$$-c + 10d = 0$$

 $-20d + 2c = 3$

Systems of Equations

Sheet 1

Determine whether each system of linear equations has 'unique solution', 'no solution' or 'infinitely many solutions'.

1)
$$y + 7x = 50$$

 $14x - 5y = -28$

2)
$$3s = -18r + 15$$

 $12r + 2s = 10$

unique solution

infinitely many solutions

3)
$$54 = -6a + 18b$$

 $3a - 9b = -27$

4)
$$2q = 20 + 5r$$

 $6q - 15r = 12$

infinitely many solutions

no solution

5)
$$-4s + 2t - 13 = 0$$

 $8s - 6t = 42$

6)
$$5y - 20z = 45$$

 $y - 4z = 9$

unique solution

infinitely many solutions

7)
$$14m = 3n + 8$$
 $-6n + 28m = 12$

8)
$$-11 = -20u + 5v$$

 $6u + v = 22$

no solution

unique solution

9)
$$-4p + 12q - 36 = 0$$

 $-p + 3q - 9 = 0$

10)
$$-c + 10d = 0$$

 $-20d + 2c = 3$

infinitely many solutions

no solution