
Q Learning Step-By-Step Tutorial

This tutorial introduces the concept of Q-learning through a simple but 
comprehensive numerical example.  The example describes an agent 
which uses unsupervised training to learn about an unknown 
environment.  You might also find it helpful to compare this example with 
the accompanying source code examples.

Suppose we have 5 rooms in a building connected by doors as shown in 
the figure below.  We'll number each room 0 through 4.  The outside of 
the building can be thought of as one big room (5).  Notice that doors 1 
and 4 lead into the building from room 5 (outside).

We can represent the rooms on a graph, each room as a node, and each 
door as a link.

For this example, we'd like to put an agent in any room, and from that 
room, go outside the building (this will be our target room). In other 
words, the goal room is number 5. To set this room as a goal, we'll 
associate a reward value to each door (i.e. link between nodes). The 
doors that lead immediately to the goal have an instant reward of 100.  
Other doors not directly connected to the target room have zero reward. 
Because doors are two-way ( 0 leads to 4, and 4 leads back to 0 ), two 



arrows are assigned to each room. Each arrow contains an instant 
reward value, as shown below:

Of course, Room 5 loops back to itself with a reward of 100, and all other 
direct connections to the goal room carry a reward of 100.  In Q-learning, 
the goal is to reach the state with the highest reward, so that if the agent 
arrives at the goal, it will remain there forever. This type of goal is called 
an "absorbing goal".

Imagine our agent as a dumb virtual robot that can learn through 
experience. The agent can pass from one room to another but has no 
knowledge of the environment, and doesn't know which sequence of 
doors lead to the outside.

Suppose we want to model some kind of simple evacuation of an agent 
from any room in the building. Now suppose we have an agent in Room 
2 and we want the agent to learn to reach outside the house (5).

The terminology in Q-Learning includes the terms "state" and "action".

We'll call each room, including outside, a "state", and the agent's 
movement from one room to another will be an "action".  In our diagram, 
a "state" is depicted as a node, while "action" is represented by the 
arrows.



Suppose the agent is in state 2.  From state 2, it can go to state 3 
because state 2 is connected to 3.  From state 2, however, the agent 
cannot directly go to state 1 because there is no direct door connecting 
room 1 and 2 (thus, no arrows).  From state 3, it can go either to state 1 
or 4 or back to 2 (look at all the arrows about state 3).  If the agent is in 
state 4, then the three possible actions are to go to state 0, 5 or 3.  If the 
agent is in state 1, it can go either to state 5 or 3.  From state 0, it can 
only go back to state 4.

We can put the state diagram and the instant reward values into the 
following reward table, "matrix R".

The -1's in the table represent null values (i.e.; where there isn't a link 
between nodes). For example, State 0 cannot go to State 1.

Now we'll add a similar matrix, "Q", to the brain of our agent, 
representing the memory of what the agent has learned through 
experience.  The rows of matrix Q represent the current state of the 
agent, and the columns represent the possible actions leading to the 
next state (the links between the nodes).

The agent starts out knowing nothing, the matrix Q is initialized to zero.  
In this example, for the simplicity of explanation, we assume the number 
of states is known (to be six).  If we didn't know how many states were 
involved, the matrix Q could start out with only one element.  It is a 
simple task to add more columns and rows in matrix Q if a new state is 
found.

The transition rule of Q learning is a very simple formula:



Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all 
actions)]

According to this formula, a value assigned to a specific element of 
matrix Q, is equal to the sum of the corresponding value in matrix R and 
the learning parameter Gamma, multiplied by the maximum value of Q 
for all possible actions in the next state.

Our virtual agent will learn through experience, without a teacher (this is 
called unsupervised learning).  The agent will explore from state to state 
until it reaches the goal. We'll call each exploration an episode.  Each 
episode consists of the agent moving from the initial state to the goal 
state.  Each time the agent arrives at the goal state, the program goes to 
the next episode.

The Q-Learning algorithm goes as follows:

1. Set the gamma parameter, and environment rewards in matrix R.

2. Initialize matrix Q to zero.

3. For each episode:

Select a random initial state.

Do While the goal state hasn't been reached.

• Select one among all possible actions for the current state.
• Using this possible action, consider going to the next state.
• Get maximum Q value for this next state based on all possible 

actions.
• Compute: Q(state, action) = R(state, action) + Gamma * 

Max[Q(next state, all actions)]

• Set the next state as the current state.
End Do

End For

The algorithm above is used by the agent to learn from experience.  
Each episode is equivalent to one training session.  In each training 
session, the agent explores the environment (represented by matrix R ), 
receives the reward (if any) until it reaches the goal state. The purpose of 
the training is to enhance the 'brain' of our agent, represented by matrix 
Q.  More training results in a more optimized matrix Q.  In this case, if the 
matrix Q has been enhanced, instead of exploring around, and going 
back and forth to the same rooms, the agent will find the fastest route to 
the goal state.

The Gamma parameter has a range of 0 to 1 (0 <= Gamma > 1).  If 
Gamma is closer to zero, the agent will tend to consider only immediate 



rewards.  If Gamma is closer to one, the agent will consider future 
rewards with greater weight, willing to delay the reward.

To use the matrix Q, the agent simply traces the sequence of states, 
from the initial state to goal state.  The algorithm finds the actions with 
the highest reward values recorded in matrix Q for current state:

Algorithm to utilize the Q matrix:

1. Set current state = initial state.

2. From current state, find the action with the highest Q value.

3. Set current state = next state.

4. Repeat Steps 2 and 3 until current state = goal state.

The algorithm above will return the sequence of states from the initial 
state to the goal state.


