Linear Equations: Solutions Using Matrices with Three Variables

Solving a system of equations by using matrices is merely an organized manner of using the elimination method.

Example 1

Solve this system of equations by using matrices.

$$2x + y - 3z = -4$$
$$4x - 2y + z = 9$$
$$3x + 5y - 2z = 5$$

The goal is to arrive at a matrix of the following form.

-	ı	Ь	С	÷	d
()	е	f	÷	g
()	0	h	÷	i

To do this, you use row multiplications, row additions, or row switching, as shown in the following.

Put the equation in matrix form.

Eliminate the x-coefficient below row 1.

Retain row (1)	2	1	-3	÷	-4	(4)
Add -2 times row (1) plus 1 times row(2)	0	-4	7	÷	17	(5)
Add – 3 times row(1) plus 2 times row (3)	0	7	5	÷	22]	(6)

Eliminate the y-coefficient below row 5.

Retain $row(4)$	Γ	2	1	-3	÷	-4	(7)
Retain $row(5)$		0	-4	7	÷	17	(8)
Add 7 times $row(5)$ plus 4 times $row(6)$		0	0	69	÷	207	(9)

Reinserting the variables, this system is now

2x + y - 3z = -4 (7)-4y + 7z = 17 (8)69z = 207 (9)

Equation (9) now can be solved for z. That result is substituted into equation (8), which is then solved for y. The values for z and y then are substituted into equation (7), which then is solved for x.

$$69z = 2$$

$$z = 3$$

$$-4y + 7z = 17$$

$$-4y + 7(3) = 17$$

$$-4y - 21 = 17$$

$$-4y = -4$$

$$y = 1$$

$$2x + y + 3z = -4$$

$$2x + 1 - 3(3) = -4$$

$$2x + 1 - 9 = -4$$

$$2x = 4$$

$$x = 2$$

The check is left to you. The solution is x = 2, y = 1, z = 3.

Example 2

Solve the following system of equations, using matrices.

 $\begin{cases} 4x + 9y = 8\\ 8x + 6z = -1\\ 6y + 6z = -1 \end{cases}$

Put the equations in matrix form.

4x + 9y = 8]	4	9	0	÷	8	(1)
$8x + 6z = -1 \} \rightarrow $	8	0	6	÷	-1	(2)
$6y + 6z = -1 \Big] \qquad \Big[$	0	6	6	÷	-1	(3)

Eliminate the x-coefficient below row 1.

file:///C:/Users/54861/Desktop/linalg/矩阵解线性方程组.html

Retain row (1)	4	9	0	÷	8]	(4)
Replace $row(2)$ with $row(3)$	0	6	6	÷	-1	(5)
Add -2 times row(1)plus 1 times row (2)	0	-18	6	÷	-17	(6)

Eliminate the y-coefficient below row 5.

Retain row (4)	Γ	4	9	0	÷	8	(7)
Retain $row(5)$		0	6	6	÷	-1	(8)
Add 3 times row(5)plus 1 times row (6)		0	0	24	÷	-20	(9)

Reinserting the variables, the system is now:

4x + 9y = 8 (7) 6y + 6z = -1 (8) 24z = -20 (9)

Equation (9) can be solved for z.

$$24z = -20$$
$$z = -\frac{20}{24}$$
$$z = -\frac{5}{6}$$

Substitute $z = -\frac{5}{6}$ into equation (8) and solve for *y*.

6y + 6z = -1 $6y + 6\left(-\frac{5}{6}\right) = -1$ 6y - 5 = -1 6y = 4 $y = \frac{4}{6}$ $y = \frac{2}{3}$ Substitute $y = \frac{2}{3}$ into equation (7) and solve for x.

4x + 9y = 8 $4x + 9\left(\frac{2}{3}\right) = 8$ 4x + 6 = 84x = 2 $x = \frac{2}{4}$ $x = \frac{1}{2}$

The check of the solution is left to you. The solution is $x = \frac{1}{2}$, $y = \frac{2}{3}$, $z = -\frac{5}{6}$.